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(A) 
In a periodic focusing system, a stopband appears when 

the phase advance per period of the betatron oscillation is 

n7-r (n = 0,1,2 ,. . . 1. The width of this stopband is finite so 

that parameters (field gradient of quadrupoles, for example) 

must be changed by a certain amount to regain the stable beta- 

tron oscillation. Within the stopband, the betatron motion is 

unstable, that is, the amplitude grows exponentially. The 

growth factor per period is different for different stopbands 

and, within a stopband, it takes different values depending on 

parameters of the system. In a circular machine like the main 

ring, the beam intensity would decrease more or less exponen- 

tially as the beam makes many turns if the focusing system 

happens to be sitting in one of these stopbands. This is true 

even for a perfect machine in which its closed orbit coincides 

with the geometrical axis of the focusing system. Four stopbands 

nearest the design point are shown in Fig. 1 for the main ring 

when the injection energy is 7 GeV. Note that, corresponding 

to a phse advance of nr, one gets the tune 6nT/2n = 3n since 
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there are six periods in the main ring. Uncertainties in the 

average field gradient (BG and Bi) are mostly due to remnant 

fields (-2.5 G/cm) which are not necessarily uniform for all 

quadrupoles. In Fig, 1, a small effect of dipoles on v 
Y 

NY = +0.05 at v 
Y = 20) is not included. The growth factors 

per turn in these stopbands are,given in Fig. 2. For example, 

if the average Bi is 51 G/cm and the average BA is 46.5 G/cm 

-47 G/cm, the amplitude grows (2.4)n times in n turns. 

(B) 
Courant-Snyder formalism of the betatron oscillation is 

well known when the motion is stable. Since there is no 

detailed presentation of the formalism in their classical 

paper for unstable betatron oscillations, the following sketch 

may be of some 

Consider 

period L, 

with g(s) > 0. 

interest to non-specialists. 

a linear motion in a periodic system with the 

5' (s) = f(s)S(s) + s(olM (1) 

rl' (4 = h(s)S(s) - f(s)n(s) (2) 

For example, in a synchrotron, 5 = x or y, 

1? = dx/ds or dy/ds, f(s) = 0, g(s) = 1 and h.(s) specifies the 

focusing action of each element in the synchrotron. For a 

certain application (synchrocyclotrons or cyclotrons with an 

azimuthally varying magnetic field) it is necessary to take 

f(s) # 0 and g(s) # 1. The transfer matrix from s to s + L 
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can be written fcirmally 

M(s) E M(s+Ljs) 

( cos (5 + a(s) sin (T B(s) sin 0 = 
-y(s) sin cT cos 0 - a(s) sin 0 1 

(3) 

where CT is independent of s and a(s), 8(s), and y(s) are all 

periodic with the period L. The value of the quadratic form 

w 5 YWS2W f 2@“fs)E.(s)n(s) + BW*r12~s) (4) 

is independent of s. Two eigensolutions of this system are 

c,(S) = (31/2(s)eiqts1, nA = f3-1/2 (S) I-a(s)+i]e iJl(s) 

c,(s) = B112 (s)ewi+(‘), qB = B-li2 (s)[-a(~)-i]e-~$(') 

where $(sfL) - Q(s) = ,Q. Betatron oscillation parameters 

satisfy the following relations 

da/ds = -hP - gy, 

dB/ds = 2 wqvd, 

dy/ds = -2(hcz+fy), 

WW/ds = g/e, 

YB = 1+ a2 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

So far, no restriction has been imposed on the trace of 

matrix M(s). If ITrMl 5 2, all parameters (a, 13, y, $, W, 0) 

are real and the motion is stable. If ITrMl = 2, cos (3 = rtl 
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so that CT = nn (n = 0,1,2,...). Courant-Snyder formalism 

"breaks down altogether" {their own words). The primary 

interest here is the case when ITrMl > 2. There are two 

possibilities: 

(a) TrM > 2, cos CT > 1 

u = 2n7r + iv (11 = real) 

cos u = cash(p), sin u = i sinh(p) 

(b) TrM < -2, cos u < -1 

CT = (2n+l) B + iv (11 = real) 

cos u = -cash (11) , sin 0 = -i sinh(v) 

It is necessary to make a convention 

sin G E positive imaginary 

SQ that 

y>O if TrM > 2 

1-1 S 0 if TrM < -2, 

The opposite convention is equally valid. Whichever convention 

is used, it should be consistent with the relation 

cf E +b+L) * '#(s) = /S+Fg(s)/f3(s) ds. 
s 

(12) 

Since elements of the matrix M(s) are all real quantities, 

a(s) I B(s), and y(s) are pure imaginary, 

a(s) i i.%(s), B(s) 5 i&_(s) f y(s) E iy(s). 

From (ll), 

yp=g2-1 (g&y = real). (13) 
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It is important to note here that 1 and p can be positive, 

negative or zero. (For lTrM[ < 2, y and b are always positive 

by definition.) Since 

M 12 : B sin 0 = (i&)i[sinh(u)I = -f31sinh(p)I, 

sign Q) = -sign (M12). Also, sign (I) = sign (M21). From (5) 

and (61, 

(cA'nA) s+L = e-v (cAfnA) s for cos 0 > 1, p > 0 

for cos 0 < -1, v < 0 

= e’ (F,,nBl s for cos IT > 1, 1-1 > 0 

= .-e"C+-k,) s for cos cT < -1, 1-1 < 0. 

Since general solutions can be expressed as a linear combination 

of two eigensolutions, their amplitudes grow exponentially. The 

invariant quadratic form (4) represents two pairs of hyperbolas 

g,E2 + 2aEt-1 f &q2 = C!(- W/i); C > 0 and C < 0. 

Asymptotes of these hyperbolas are 

or rl = -iJ +1 
ii 5. (14) 

If g = Oory= 0, one asymptote coincides with n-axis or c-axis. 

If both y and & are zero, c- and n-axes become two asymptotes. 

Since B(s) can be zero for some values of s, formal 

expressions like (5), (6) and (12) must be defined more care- 

fully. For example, it is necessary to have eigensolutions 



-6- Tk!!! 4 
0402 

finite and continuous everywhere in the system. Because of 

the periodicity, p(s+L) = P(s) I there are even number of zeros 

of B(s); s = sl, s2, . . l , '2N' 

(a) B W ch anges from positive to negative imaginary. 

For si -6<s<s +d, i 6 << 1, one can write 

B(s) = -2igk4 (s-si) (15) 

since g(s) > 0 and B'(s) = -2g(s)ol(s) where or(si) = +i. 

By going above the pole at s = si, one can show that 
fi1/2 (s) changes by factor (-i): 

S i-6 si+6 

” ,, “.> s 

s 6 ‘E 
1 ‘i+& 

with z E s-s. 1 
S i-6 St s I si-c: s-s i = ]zleia 

B1'2 (s) = iG]zj 1/2e-i7T/4 

S i+E<Shi+6: s-s i = 1’1 
F2 (s) = mjlzl 1/2e-in/4 * 

Similarly, the change in e i* (4 1s (+i): 

$ds) = V'(Si-4) + 1" g/B dS 
Si-6 

s I S.-EC, 1 $ (s) = JI(‘i -8) + (i/2)Rn(lz1/6) 
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S 2 s. + E, 
1 q(s) = qts. 1 -6) + (i/Z)Rn(lz1/6) + 7r/2 

.iJl(s) = eilcI(si-*) l,1‘1'261'2(i) . 

Consequently, E, = B l/2 oei@ (d is continuous at s = s.. IL 
Note that the phase $(s) makes an increase of TT/~. Other 
functions are also continuous: 

QA = fi -l/2 (-a I- i)e 

= @ -l/2 rB ei@ = (i/2jypl/2,i$ 
-(a+i) 

6, = B 1/2e-iJ' = const.lz] (s = s i-&l 

= -const.lzj (X = si+s) 

= (-2i)@ -1/2e-iJ' = const. for both s = Sire and 

S = si+c. 

Summary 

P(s): positive imaginary to negative imaginary 

a = +i 

By going above the pole, 

fi1/2 .+ ,ia1/2 I 4J + * + ML eiJ' 3 ieiQe 

Near s = si, 

6,b) = const., qA(s) 7 const. y(s) 

<,b) = const. (s-si), n ,"$d = const. 
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(b) B(s) changes from negative to positive imaginary. 

a = -i 

By going below the pole, 

Near s = si, 

c,b) = const.fs-si), q,(S) = const. 

t,(‘) = const., 'IB ts) = const. y(s). 

Thus a pair of poles contribute K to the phase @. If 

N= 2n (even number of pairs), c = 2nT f iv and for 

N= 2n t 1 (odd number of pairs), rs = (2n+l)n t iv: 

a I Ns+L) - gJ(s) 

= p ,s"L (g/B)ds f (‘lr/2)GW 
S 

= N'rr - iP /s+L (g/g)ds 5 NT t iv. 
S 

Since B112(s) is periodic with the period L, 

= +E,(s)e-l”. 

A general solution (E,n) with the initial conditions 

E(s=O) = 0, Tl(s=O) = 1, $ (s=O) = 0 

can be written as 
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E(s) = B1'z(s=O)B1'2(s) sin +(s) 

I?(s) = B l/2 (s=O) !3-1’2 (s) [cos J,(s) - a(s) sin $(s)‘J. 

At s = L, 

5 (s=L) = B(s=O) sin o = -fi(s=O) sinh 1~1 

so that 

sign Q.)s=o = -sign W,,, 
thereby defining the sign of & for all s, 






